2023-01-24 01:41 |
Python |
csv-read
|
uncompressed, arrow_table, file, fanniemae_2016Q4
|
1.239 s |
0.232 |
|
2023-01-24 01:42 |
Python |
csv-read
|
uncompressed, arrow_table, streaming, fanniemae_2016Q4
|
13.499 s |
1.219 |
|
2023-01-24 01:43 |
Python |
csv-read
|
gzip, arrow_table, file, nyctaxi_2010-01
|
8.444 s |
-1.301 |
|
2023-01-24 01:46 |
Python |
dataframe-to-table
|
type_floats
|
0.010 s |
0.156 |
|
2023-01-24 01:41 |
Python |
csv-read
|
gzip, arrow_table, file, fanniemae_2016Q4
|
5.777 s |
0.511 |
|
2023-01-24 01:43 |
Python |
csv-read
|
uncompressed, arrow_table, file, nyctaxi_2010-01
|
1.126 s |
0.144 |
|
2023-01-24 01:41 |
Python |
csv-read
|
gzip, arrow_table, streaming, fanniemae_2016Q4
|
13.537 s |
1.238 |
|
2023-01-24 01:44 |
Python |
csv-read
|
uncompressed, arrow_table, streaming, nyctaxi_2010-01
|
11.417 s |
-1.787 |
|
2023-01-24 01:43 |
Python |
csv-read
|
gzip, arrow_table, streaming, nyctaxi_2010-01
|
11.367 s |
-1.515 |
|
2023-01-24 01:46 |
Python |
dataframe-to-table
|
type_dict
|
0.011 s |
4.147 |
|
2023-01-24 01:46 |
Python |
dataframe-to-table
|
type_integers
|
0.010 s |
0.762 |
|
2023-01-24 01:46 |
Python |
dataframe-to-table
|
type_nested
|
2.957 s |
0.395 |
|
2023-01-24 01:46 |
Python |
dataframe-to-table
|
chi_traffic_2020_Q1
|
20.726 s |
1.877 |
|
2023-01-24 01:46 |
Python |
dataframe-to-table
|
type_strings
|
0.427 s |
0.037 |
|
2023-01-24 01:46 |
Python |
dataset-filter
|
nyctaxi_2010-01
|
1.033 s |
-0.122 |
|
2023-01-24 01:50 |
Python |
dataset-read
|
async=True, pre_buffer=true, nyctaxi_multi_parquet_s3
|
83.345 s |
-0.130 |
|
2023-01-24 02:06 |
Python |
dataset-selectivity
|
1%, nyctaxi_multi_ipc_s3
|
2.039 s |
0.206 |
|
2023-01-24 01:55 |
Python |
dataset-read
|
async=True, pre_buffer=false, nyctaxi_multi_parquet_s3
|
83.206 s |
0.441 |
|
2023-01-24 02:06 |
Python |
dataset-select
|
nyctaxi_multi_parquet_s3_repartitioned
|
1.155 s |
1.222 |
|
2023-01-24 02:06 |
Python |
dataset-selectivity
|
1%, nyctaxi_multi_parquet_s3
|
1.216 s |
-0.021 |
|
2023-01-24 02:06 |
Python |
dataset-selectivity
|
10%, nyctaxi_multi_parquet_s3
|
1.241 s |
0.021 |
|
2023-01-24 02:06 |
Python |
dataset-selectivity
|
100%, nyctaxi_multi_parquet_s3
|
1.340 s |
-0.183 |
|
2023-01-24 02:06 |
Python |
dataset-read
|
async=True, nyctaxi_multi_ipc_s3
|
214.968 s |
0.943 |
|
2023-01-24 02:06 |
Python |
dataset-selectivity
|
10%, nyctaxi_multi_ipc_s3
|
2.042 s |
0.186 |
|
2023-01-24 02:06 |
Python |
dataset-selectivity
|
100%, nyctaxi_multi_ipc_s3
|
1.648 s |
0.266 |
|
2023-01-24 02:06 |
Python |
dataset-selectivity
|
1%, chi_traffic_2020_Q1
|
1.181 s |
-0.426 |
|
2023-01-24 02:06 |
Python |
dataset-selectivity
|
10%, chi_traffic_2020_Q1
|
1.226 s |
-0.622 |
|
2023-01-24 02:07 |
Python |
dataset-serialize
|
arrow, 1pc, nyctaxi_multi_parquet_s3
|
0.023 s |
-0.206 |
|
2023-01-24 02:07 |
Python |
dataset-selectivity
|
100%, chi_traffic_2020_Q1
|
1.145 s |
-0.027 |
|
2023-01-24 02:07 |
Python |
dataset-serialize
|
csv, 1pc, nyctaxi_multi_parquet_s3
|
0.731 s |
1.489 |
|
2023-01-24 02:07 |
Python |
dataset-serialize
|
parquet, 1pc, nyctaxi_multi_parquet_s3
|
0.303 s |
1.979 |
|
2023-01-24 02:07 |
Python |
dataset-serialize
|
feather, 1pc, nyctaxi_multi_parquet_s3
|
0.023 s |
-0.233 |
|
2023-01-24 02:07 |
Python |
dataset-serialize
|
parquet, 10pc, nyctaxi_multi_parquet_s3
|
2.903 s |
1.736 |
|
2023-01-24 02:07 |
Python |
dataset-serialize
|
arrow, 10pc, nyctaxi_multi_parquet_s3
|
0.199 s |
-0.292 |
|
2023-01-24 02:11 |
Python |
dataset-serialize
|
arrow, 100pc, nyctaxi_multi_parquet_s3
|
2.147 s |
0.929 |
|
2023-01-24 02:08 |
Python |
dataset-serialize
|
csv, 10pc, nyctaxi_multi_parquet_s3
|
7.260 s |
1.520 |
|
2023-01-24 02:07 |
Python |
dataset-serialize
|
feather, 10pc, nyctaxi_multi_parquet_s3
|
0.199 s |
1.433 |
|
2023-01-24 02:11 |
Python |
dataset-serialize
|
parquet, 100pc, nyctaxi_multi_parquet_s3
|
30.026 s |
1.604 |
|
2023-01-24 02:12 |
Python |
dataset-serialize
|
feather, 100pc, nyctaxi_multi_parquet_s3
|
2.150 s |
0.615 |
|
2023-01-24 02:19 |
Python |
dataset-serialize
|
arrow, 1pc, nyctaxi_multi_ipc_s3
|
0.025 s |
1.111 |
|
2023-01-24 02:19 |
Python |
dataset-serialize
|
csv, 100pc, nyctaxi_multi_parquet_s3
|
73.350 s |
1.491 |
|
2023-01-24 02:19 |
Python |
dataset-serialize
|
feather, 1pc, nyctaxi_multi_ipc_s3
|
0.026 s |
0.550 |
|
2023-01-24 02:19 |
Python |
dataset-serialize
|
csv, 1pc, nyctaxi_multi_ipc_s3
|
0.836 s |
1.414 |
|
2023-01-24 02:19 |
Python |
dataset-serialize
|
parquet, 1pc, nyctaxi_multi_ipc_s3
|
0.283 s |
0.925 |
|
2023-01-24 02:20 |
Python |
dataset-serialize
|
parquet, 10pc, nyctaxi_multi_ipc_s3
|
3.002 s |
1.015 |
|
2023-01-24 02:20 |
Python |
dataset-serialize
|
feather, 10pc, nyctaxi_multi_ipc_s3
|
0.226 s |
-0.810 |
|
2023-01-24 02:20 |
Python |
dataset-serialize
|
arrow, 10pc, nyctaxi_multi_ipc_s3
|
0.226 s |
-0.760 |
|
2023-01-24 02:21 |
Python |
dataset-serialize
|
csv, 10pc, nyctaxi_multi_ipc_s3
|
8.393 s |
1.442 |
|
2023-01-24 02:34 |
Python |
file-read
|
uncompressed, parquet, dataframe, nyctaxi_2010-01
|
0.983 s |
-0.046 |
|
2023-01-24 02:24 |
Python |
dataset-serialize
|
feather, 100pc, nyctaxi_multi_ipc_s3
|
2.407 s |
0.839 |
|
2023-01-24 02:37 |
Python |
file-write
|
snappy, parquet, table, fanniemae_2016Q4
|
10.680 s |
1.024 |
|
2023-01-24 02:38 |
Python |
file-write
|
uncompressed, feather, table, fanniemae_2016Q4
|
4.627 s |
3.131 |
|
2023-01-24 02:55 |
R |
file-read
|
uncompressed, feather, dataframe, fanniemae_2016Q4, R
|
0.567 s |
0.175 |
|
2023-01-24 02:58 |
R |
file-write
|
uncompressed, parquet, table, fanniemae_2016Q4, R
|
9.703 s |
0.620 |
|
2023-01-24 02:39 |
Python |
file-write
|
lz4, feather, table, fanniemae_2016Q4
|
1.558 s |
2.750 |
|
2023-01-24 02:24 |
Python |
dataset-serialize
|
arrow, 100pc, nyctaxi_multi_ipc_s3
|
2.408 s |
-0.427 |
|
2023-01-24 02:34 |
Python |
file-read
|
uncompressed, feather, dataframe, fanniemae_2016Q4
|
5.744 s |
-0.206 |
|
2023-01-24 02:41 |
Python |
file-write
|
snappy, parquet, dataframe, nyctaxi_2010-01
|
8.957 s |
2.415 |
|
2023-01-24 02:54 |
R |
dataframe-to-table
|
type_floats, R
|
0.013 s |
-1.402 |
|
2023-01-24 02:55 |
R |
file-read
|
uncompressed, feather, table, fanniemae_2016Q4, R
|
0.314 s |
0.201 |
|
2023-01-24 02:56 |
R |
file-read
|
snappy, parquet, table, nyctaxi_2010-01, R
|
0.577 s |
-0.440 |
|
2023-01-24 02:57 |
R |
file-read
|
lz4, feather, dataframe, nyctaxi_2010-01, R
|
0.902 s |
0.183 |
|
2023-01-24 03:03 |
R |
file-write
|
snappy, parquet, dataframe, fanniemae_2016Q4, R
|
17.132 s |
0.520 |
|
2023-01-24 02:33 |
Python |
dataset-serialize
|
csv, 100pc, nyctaxi_multi_ipc_s3
|
83.302 s |
1.430 |
|
2023-01-24 02:35 |
Python |
file-read
|
snappy, parquet, dataframe, nyctaxi_2010-01
|
0.938 s |
0.022 |
|
2023-01-24 02:38 |
Python |
file-write
|
snappy, parquet, dataframe, fanniemae_2016Q4
|
20.235 s |
0.673 |
|
2023-01-24 02:41 |
Python |
file-write
|
uncompressed, parquet, dataframe, nyctaxi_2010-01
|
7.024 s |
2.607 |
|
2023-01-24 02:42 |
Python |
file-write
|
lz4, feather, dataframe, nyctaxi_2010-01
|
3.168 s |
0.097 |
|
2023-01-24 02:57 |
R |
file-read
|
uncompressed, feather, table, nyctaxi_2010-01, R
|
0.217 s |
0.065 |
|
2023-01-24 02:24 |
Python |
dataset-serialize
|
parquet, 100pc, nyctaxi_multi_ipc_s3
|
30.442 s |
1.025 |
|
2023-01-24 02:33 |
Python |
file-read
|
uncompressed, parquet, table, fanniemae_2016Q4
|
1.643 s |
0.075 |
|
2023-01-24 02:34 |
Python |
file-read
|
uncompressed, parquet, table, nyctaxi_2010-01
|
0.992 s |
-0.186 |
|
2023-01-24 02:35 |
Python |
file-write
|
uncompressed, parquet, table, fanniemae_2016Q4
|
10.366 s |
1.706 |
|
2023-01-24 02:40 |
Python |
file-write
|
uncompressed, parquet, table, nyctaxi_2010-01
|
5.527 s |
2.678 |
|
2023-01-24 02:53 |
R |
dataframe-to-table
|
chi_traffic_2020_Q1, R
|
4.378 s |
-0.303 |
|
2023-01-24 02:54 |
R |
dataframe-to-table
|
type_nested, R
|
0.573 s |
0.440 |
|
2023-01-24 02:56 |
R |
file-read
|
lz4, feather, dataframe, fanniemae_2016Q4, R
|
0.847 s |
0.243 |
|
2023-01-24 02:57 |
R |
file-read
|
uncompressed, feather, dataframe, nyctaxi_2010-01, R
|
0.817 s |
0.148 |
|
2023-01-24 02:57 |
R |
file-read
|
lz4, feather, table, nyctaxi_2010-01, R
|
0.577 s |
0.187 |
|
2023-01-24 03:10 |
R |
file-write
|
snappy, parquet, table, nyctaxi_2010-01, R
|
6.658 s |
0.706 |
|
2023-01-24 02:33 |
Python |
file-read
|
snappy, parquet, dataframe, fanniemae_2016Q4
|
1.521 s |
-0.782 |
|
2023-01-24 02:33 |
Python |
file-read
|
uncompressed, parquet, dataframe, fanniemae_2016Q4
|
1.634 s |
0.027 |
|
2023-01-24 02:35 |
Python |
file-read
|
lz4, feather, dataframe, nyctaxi_2010-01
|
1.325 s |
0.330 |
|
2023-01-24 02:42 |
Python |
wide-dataframe
|
use_legacy_dataset=true
|
0.375 s |
0.406 |
|
2023-01-24 02:55 |
R |
file-read
|
lz4, feather, table, fanniemae_2016Q4, R
|
0.595 s |
0.158 |
|
2023-01-24 02:56 |
R |
file-read
|
uncompressed, parquet, table, nyctaxi_2010-01, R
|
0.574 s |
-0.379 |
|
2023-01-24 03:00 |
R |
file-write
|
uncompressed, parquet, dataframe, fanniemae_2016Q4, R
|
16.690 s |
0.454 |
|
2023-01-24 03:05 |
R |
file-write
|
lz4, feather, table, fanniemae_2016Q4, R
|
1.495 s |
-1.328 |
|
2023-01-24 03:15 |
R |
file-write
|
lz4, feather, dataframe, nyctaxi_2010-01, R
|
2.089 s |
-0.538 |
|
2023-01-24 02:34 |
Python |
file-read
|
uncompressed, feather, table, fanniemae_2016Q4
|
2.336 s |
0.136 |
|
2023-01-24 02:34 |
Python |
file-read
|
lz4, feather, table, fanniemae_2016Q4
|
0.833 s |
-1.042 |
|
2023-01-24 02:34 |
Python |
file-read
|
snappy, parquet, table, nyctaxi_2010-01
|
0.948 s |
-0.222 |
|
2023-01-24 02:35 |
Python |
file-read
|
lz4, feather, table, nyctaxi_2010-01
|
0.688 s |
0.015 |
|
2023-01-24 02:42 |
Python |
file-write
|
uncompressed, feather, table, nyctaxi_2010-01
|
2.565 s |
0.570 |
|
2023-01-24 02:55 |
R |
file-read
|
snappy, parquet, dataframe, fanniemae_2016Q4, R
|
1.604 s |
-1.304 |
|
2023-01-24 02:56 |
R |
file-read
|
snappy, parquet, dataframe, nyctaxi_2010-01, R
|
0.921 s |
-0.405 |
|
2023-01-24 03:01 |
R |
file-write
|
snappy, parquet, table, fanniemae_2016Q4, R
|
10.126 s |
0.585 |
|
2023-01-24 03:07 |
R |
file-write
|
lz4, feather, dataframe, fanniemae_2016Q4, R
|
7.500 s |
-0.766 |
|
2023-01-24 03:15 |
R |
partitioned-dataset-filter
|
small_no_files, dataset-taxi-parquet, R
|
0.258 s |
-1.086 |
|
2023-01-24 02:33 |
Python |
file-read
|
snappy, parquet, table, fanniemae_2016Q4
|
1.534 s |
-1.081 |
|
2023-01-24 02:35 |
Python |
file-read
|
uncompressed, feather, table, nyctaxi_2010-01
|
0.941 s |
0.155 |
|
2023-01-24 02:42 |
Python |
wide-dataframe
|
use_legacy_dataset=false
|
0.513 s |
0.303 |
|
2023-01-24 02:54 |
R |
file-read
|
uncompressed, parquet, table, fanniemae_2016Q4, R
|
1.350 s |
-1.460 |
|
2023-01-24 03:03 |
R |
file-write
|
uncompressed, feather, table, fanniemae_2016Q4, R
|
2.957 s |
0.639 |
|
2023-01-24 03:09 |
R |
file-write
|
uncompressed, parquet, dataframe, nyctaxi_2010-01, R
|
5.775 s |
0.451 |
|
2023-01-24 02:34 |
Python |
file-read
|
lz4, feather, dataframe, fanniemae_2016Q4
|
4.322 s |
-2.489 |
|
2023-01-24 02:35 |
Python |
file-read
|
uncompressed, feather, dataframe, nyctaxi_2010-01
|
1.583 s |
0.243 |
|
2023-01-24 02:42 |
Python |
file-write
|
uncompressed, feather, dataframe, nyctaxi_2010-01
|
4.096 s |
-0.030 |
|
2023-01-24 03:13 |
R |
file-write
|
uncompressed, feather, dataframe, nyctaxi_2010-01, R
|
2.182 s |
-0.205 |
|
2023-01-24 03:15 |
R |
partitioned-dataset-filter
|
dims, dataset-taxi-parquet, R
|
0.704 s |
-6.759 |
|
2023-01-24 02:37 |
Python |
file-write
|
uncompressed, parquet, dataframe, fanniemae_2016Q4
|
19.895 s |
1.573 |
|
2023-01-24 02:39 |
Python |
file-write
|
uncompressed, feather, dataframe, fanniemae_2016Q4
|
13.669 s |
3.089 |
|
2023-01-24 02:40 |
Python |
file-write
|
lz4, feather, dataframe, fanniemae_2016Q4
|
10.628 s |
2.325 |
|
2023-01-24 02:53 |
R |
dataframe-to-table
|
type_strings, R
|
0.536 s |
-0.200 |
|
2023-01-24 02:54 |
R |
dataframe-to-table
|
type_integers, R
|
0.010 s |
-0.231 |
|
2023-01-24 02:55 |
R |
file-read
|
snappy, parquet, table, fanniemae_2016Q4, R
|
1.346 s |
-1.197 |
|
2023-01-24 03:05 |
R |
file-write
|
uncompressed, feather, dataframe, fanniemae_2016Q4, R
|
9.004 s |
0.580 |
|
2023-01-24 03:14 |
R |
file-write
|
lz4, feather, table, nyctaxi_2010-01, R
|
1.473 s |
-0.905 |
|
2023-01-24 02:41 |
Python |
file-write
|
snappy, parquet, table, nyctaxi_2010-01
|
7.450 s |
2.542 |
|
2023-01-24 02:42 |
Python |
file-write
|
lz4, feather, table, nyctaxi_2010-01
|
1.755 s |
0.049 |
|
2023-01-24 02:53 |
R |
dataframe-to-table
|
type_dict, R
|
0.061 s |
-0.911 |
|
2023-01-24 02:55 |
R |
file-read
|
uncompressed, parquet, dataframe, fanniemae_2016Q4, R
|
1.603 s |
-1.266 |
|
2023-01-24 02:56 |
R |
file-read
|
uncompressed, parquet, dataframe, nyctaxi_2010-01, R
|
0.917 s |
-0.137 |
|
2023-01-24 03:08 |
R |
file-write
|
uncompressed, parquet, table, nyctaxi_2010-01, R
|
4.932 s |
0.695 |
|
2023-01-24 03:15 |
R |
partitioned-dataset-filter
|
vignette, dataset-taxi-parquet, R
|
0.558 s |
0.435 |
|
2023-01-24 03:11 |
R |
file-write
|
snappy, parquet, dataframe, nyctaxi_2010-01, R
|
7.730 s |
0.456 |
|
2023-01-24 03:12 |
R |
file-write
|
uncompressed, feather, table, nyctaxi_2010-01, R
|
1.313 s |
-0.905 |
|
2023-01-24 03:15 |
R |
partitioned-dataset-filter
|
payment_type_3, dataset-taxi-parquet, R
|
1.620 s |
-1.196 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
int8Array
|
0.006 s |
0.237 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
numbers
|
0.002 s |
-1.286 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
dictionary
|
0.004 s |
0.832 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
string
|
0.124 s |
0.633 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
uint16Array
|
0.007 s |
-0.553 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
int64Array
|
0.012 s |
0.377 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
uint8Array
|
0.002 s |
-1.015 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
int8Array
|
0.002 s |
-0.477 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
int32Array
|
0.002 s |
-0.425 |
|
2023-01-24 03:26 |
JavaScript |
Get values by index
|
destination, 1,000,000, Dictionary<Int8, Utf8>, tracks
|
0.039 s |
0.474 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
float64Array
|
0.008 s |
0.442 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
booleans
|
0.010 s |
-0.121 |
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
uint64Array
|
|
|
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
int16Array
|
|
|
|
2023-01-24 03:26 |
JavaScript |
Get values by index
|
lng, 1,000,000, Float32, tracks
|
0.030 s |
0.634 |
|
2023-01-24 03:26 |
JavaScript |
vectorFromArray
|
dictionary
|
0.016 s |
1.423 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
uint16Array
|
0.002 s |
0.044 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
uint64Array
|
0.004 s |
0.819 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
int16Array
|
0.002 s |
0.131 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
int16Array
|
0.006 s |
0.227 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
string
|
0.146 s |
-0.215 |
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
uint16Array
|
|
|
|
2023-01-24 03:26 |
JavaScript |
vectorFromArray
|
booleans
|
0.018 s |
-0.128 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
int32Array
|
0.006 s |
0.356 |
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
uint32Array
|
|
|
|
2023-01-24 03:26 |
JavaScript |
vectorFromArray
|
numbers
|
0.017 s |
-0.203 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
float64Array
|
0.002 s |
-1.294 |
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
int64Array
|
|
|
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
uint32Array
|
0.002 s |
0.355 |
|
2023-01-24 03:26 |
JavaScript |
Get values by index
|
lat, 1,000,000, Float32, tracks
|
0.030 s |
0.797 |
|
2023-01-24 03:26 |
JavaScript |
Get values by index
|
origin, 1,000,000, Dictionary<Int8, Utf8>, tracks
|
0.039 s |
0.366 |
|
2023-01-24 03:26 |
JavaScript |
Iterate vectors
|
origin, 1,000,000, Dictionary<Int8, Utf8>, tracks
|
0.040 s |
0.080 |
|
2023-01-24 03:26 |
JavaScript |
Slice toArray vectors
|
destination, 1,000,000, Dictionary<Int8, Utf8>, tracks
|
0.108 s |
-0.006 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
int64Array
|
0.004 s |
0.251 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
booleans
|
0.004 s |
1.043 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
string
|
0.125 s |
0.657 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
uint64Array
|
0.012 s |
-0.279 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
uint16Array
|
0.003 s |
0.849 |
|
2023-01-24 03:26 |
JavaScript |
Iterate Vector
|
float32Array
|
0.002 s |
-0.381 |
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
uint8Array
|
|
|
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
int32Array
|
|
|
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
int32Array
|
0.003 s |
1.443 |
|
2023-01-24 03:26 |
JavaScript |
Slice vectors
|
lat, 1,000,000, Float32, tracks
|
0.000 s |
|
|
2023-01-24 03:26 |
JavaScript |
Slice vectors
|
origin, 1,000,000, Dictionary<Int8, Utf8>, tracks
|
0.000 s |
|
|
2023-01-24 03:26 |
JavaScript |
Spread vectors
|
lat, 1,000,000, Float32, tracks
|
0.187 s |
0.380 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
uint8Array
|
0.006 s |
0.292 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
uint32Array
|
0.007 s |
0.150 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
numbers
|
0.008 s |
0.404 |
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
int8Array
|
|
|
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
float32Array
|
|
|
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
float32Array
|
0.008 s |
0.938 |
|
2023-01-24 03:26 |
JavaScript |
Spread Vector
|
dictionary
|
0.010 s |
1.124 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
uint8Array
|
0.003 s |
1.569 |
|
2023-01-24 03:26 |
JavaScript |
Spread vectors
|
origin, 1,000,000, Dictionary<Int8, Utf8>, tracks
|
0.108 s |
0.243 |
|
2023-01-24 03:26 |
JavaScript |
Table
|
tracks, 1,000,000
|
0.050 s |
-0.071 |
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
float64Array
|
|
|
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
booleans
|
0.010 s |
0.088 |
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
string
|
0.145 s |
0.068 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
uint64Array
|
0.003 s |
1.243 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
booleans
|
0.002 s |
0.464 |
|
2023-01-24 03:26 |
JavaScript |
Parse
|
write recordBatches, tracks
|
0.002 s |
-1.610 |
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
numbers
|
|
|
|
2023-01-24 03:26 |
JavaScript |
toArray Vector
|
dictionary
|
0.010 s |
0.388 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
int8Array
|
0.003 s |
1.172 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
numbers
|
0.002 s |
0.009 |
|
2023-01-24 03:26 |
JavaScript |
Parse
|
read recordBatches, tracks
|
0.000 s |
-1.757 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
uint32Array
|
0.003 s |
0.729 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
float32Array
|
0.002 s |
0.337 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
dictionary
|
0.002 s |
0.400 |
|
2023-01-24 03:26 |
JavaScript |
Iterate vectors
|
lat, 1,000,000, Float32, tracks
|
0.023 s |
-0.002 |
|
2023-01-24 03:26 |
JavaScript |
Slice toArray vectors
|
origin, 1,000,000, Dictionary<Int8, Utf8>, tracks
|
0.107 s |
0.591 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
int16Array
|
0.003 s |
1.610 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
int64Array
|
0.003 s |
1.126 |
|
2023-01-24 03:26 |
JavaScript |
get Vector
|
float64Array
|
0.002 s |
0.308 |
|
2023-01-24 03:26 |
JavaScript |
Slice toArray vectors
|
lng, 1,000,000, Float32, tracks
|
0.000 s |
-0.613 |
|
2023-01-24 03:26 |
JavaScript |
Iterate vectors
|
lng, 1,000,000, Float32, tracks
|
0.023 s |
0.063 |
|
2023-01-24 03:26 |
JavaScript |
Slice vectors
|
destination, 1,000,000, Dictionary<Int8, Utf8>, tracks
|
0.000 s |
|
|
2023-01-24 03:26 |
JavaScript |
Spread vectors
|
lng, 1,000,000, Float32, tracks
|
0.192 s |
-1.576 |
|
2023-01-24 03:26 |
JavaScript |
Table
|
tracks, 1,000,000
|
0.261 s |
0.537 |
|
2023-01-24 03:26 |
JavaScript |
Iterate vectors
|
destination, 1,000,000, Dictionary<Int8, Utf8>, tracks
|
0.040 s |
-0.091 |
|
2023-01-24 03:26 |
JavaScript |
Slice vectors
|
lng, 1,000,000, Float32, tracks
|
0.000 s |
|
|
2023-01-24 03:26 |
JavaScript |
Slice toArray vectors
|
lat, 1,000,000, Float32, tracks
|
0.000 s |
-0.131 |
|
2023-01-24 03:26 |
JavaScript |
Table Direct Count
|
origin, 1,000,000, eq, Dictionary<Int8, Utf8>, Seattle, tracks
|
0.032 s |
0.052 |
|
2023-01-24 03:26 |
JavaScript |
Spread vectors
|
destination, 1,000,000, Dictionary<Int8, Utf8>, tracks
|
0.107 s |
1.073 |
|
2023-01-24 03:26 |
JavaScript |
Table
|
1,000,000, tracks
|
0.265 s |
0.374 |
|
2023-01-24 03:26 |
JavaScript |
Table Direct Count
|
lat, 1,000,000, gt, Float32, 0, tracks
|
0.032 s |
-0.334 |
|
2023-01-24 03:26 |
JavaScript |
Table
|
tracks, 1,000,000
|
0.094 s |
1.129 |
|
2023-01-24 03:26 |
JavaScript |
Table Direct Count
|
lng, 1,000,000, gt, Float32, 0, tracks
|
0.032 s |
0.419 |
|